Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Viruses ; 15(2)2023 01 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2287279

RESUMEN

Due to the rapid mutation of porcine epidemic diarrhea virus (PEDV), existing vaccines cannot provide sufficient immune protection for pigs. Therefore, it is urgent to design the affinity peptides for the prevention and control of this disease. In this study, we made use of a molecular docking technology for virtual screening of affinity peptides that specifically recognized the PEDV S1 C-terminal domain (CTD) protein for the first time. Experimentally, the affinity, cross-reactivity and sensitivity of the peptides were identified by an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR) test, separately. Subsequently, Cell Counting Kit-8 (CCK-8), quantitative real-time PCR (qRT-PCR), Western blot and indirect immunofluorescence were used to further study the antiviral effect of different concentrations of peptide 110766 in PEDV. Our results showed that the P/N value of peptide 110766 at 450 nm reached 167, with a KD value of 216 nM. The cytotoxic test indicated that peptide 110766 was not toxic to vero cells. Results of the absolute quantitative PCR revealed that different concentrations (3.125 µM, 6.25 µM, 12.5 µM, 25 µM, 50 µM, 100 µM, 200 µM) of peptide 110766 could significantly reduce the viral load of PEDV compared with the virus group (p < 0.0001). Similarly, results of Western blot and indirect immunofluorescence also suggested that the antiviral effect of peptide 110766 at 3.125 is still significant. Based on the above research, high-affinity peptide 110766 binding to the PEDV S1-CTD protein was attained by a molecular docking technology. Therefore, designing, screening, and identifying affinity peptides can provide a new method for the development of antiviral drugs for PEDV.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Chlorocebus aethiops , Animales , Porcinos , Glicoproteína de la Espiga del Coronavirus/genética , Simulación del Acoplamiento Molecular , Células Vero , Péptidos/farmacología , Antivirales/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
Arthritis Rheumatol ; 72(12): 1998-2004, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-880254

RESUMEN

OBJECTIVE: Coagulopathy is one of the characteristics observed in critically ill patients with coronavirus disease 2019 (COVID-19). Antiphospholipid antibodies (aPLs) contribute to coagulopathy, though their role in COVID-19 remains unclear. This study was undertaken to determine the prevalence and characteristics of aPLs in patients with COVID-19. METHODS: Sera collected from 66 COVID-19 patients who were critically ill and 13 COVID-19 patients who were not critically ill were tested by chemiluminescence immunoassay for anticardiolipin antibodies (aCLs), anti-ß2 -glycoprotein I (anti-ß2 GPI) (IgG, IgM, and IgA), and IgG anti-ß2 GPI-domain 1 (anti-ß2 GPI-D1) and IgM and IgG anti-phosphatidylserine/prothrombin (anti-PS/PT) antibodies were detected in the serum by enzyme-linked immunosorbent assay. RESULTS: Of the 66 COVID-19 patients in critical condition, aPLs were detected in 31 (47% ). Antiphospholipid antibodies were not present among COVID-19 patients who were not in critical condition. The IgA anti-ß2 GPI antibody was the most commonly observed aPL in patients with COVID-19 and was present in 28.8% (19 of 66) of the critically ill patients, followed by IgA aCLs (17 of 66, or 25.8%) and IgG anti-ß2 GPI (12 of 66, or 18.2%). For multiple aPLs, IgA anti-ß2 GPI + IgA aCLs was the most common antibody profile observed (15 of 66, or 22.7%), followed by IgA anti-ß2 GPI + IgA aCL + IgG anti-ß2 GPI (10 of 66, or 15.2%). Antiphospholipid antibodies emerge ~35-39 days after disease onset. A dynamic analysis of aPLs revealed 4 patterns based on the persistence or transient appearance of the aPLs. Patients with multiple aPLs had a significantly higher incidence of cerebral infarction compared to patients who were negative for aPLs (P = 0.023). CONCLUSION: Antiphospholipid antibodies were common in critically ill patients with COVID-19. Repeated testing demonstrating medium to high titers of aPLs and the number of aPL types a patient is positive for may help in identifying patients who are at risk of developing cerebral infarction. Antiphospholipid antibodies may be transient and disappear within a few weeks, but in genetically predisposed patients, COVID-19 may trigger the development of an autoimmune condition similar to the antiphospholipid syndrome (APS), referred to as "COVID-19-induced APS-like syndrome." Long-term follow-up of COVID-19 patients who are positive for aPLs would be of great importance in understanding the pathogenesis of this novel coronavirus.


Asunto(s)
Anticuerpos Antifosfolípidos/sangre , COVID-19/sangre , Enfermedad Crítica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Front Neurol ; 11: 806, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-685937

RESUMEN

Background: The complications of coronavirus disease 2019 (COVID-19) involved multiple organs or systems, especially in critically ill patients. We aim to investigate the neurological complications in critically ill patients with COVID-19. Methods: This retrospective single-center case series analyzed critically ill patients with COVID-19 at the intensive care unit of Tongji Hospital, Wuhan, China from February 5 to April 2, 2020. Demographic data, clinical and laboratory findings, comorbidities and treatments were collected and analyzed. Results: Among 86 patients with confirmed COVID-19, 54 patients (62.8%) were male, and the mean (SD) age was 66.6 (11.1) years. Overall, 65% patients presented with at least one neurological symptom. Twenty patients (23.3%) had symptoms involving the central nervous system, including delirium, cerebrovascular diseases and hypoxic-ischemic brain injury, while 6 patients (7%) had neuromuscular involvement. Seven of 86 patients exhibited new stroke and 6 (7%) cases were ischemic. A significantly higher prevalence of antiphospholipid antibodies was observed in patients with ischemic stroke than in those without stroke (83.3 vs. 26.9%, p < 0.05). Patients with ischemic stroke were more likely to have a higher myoglobulin level, and a lower hemoglobin level. Conclusions: The clinical spectrum of neurological complications in critically ill patients with COVID-19 was broad. Stroke, delirium and neuromuscular diseases are common neurological complications of COVID-19. Physicians should pay close attention to neurological complications in critically ill patients with COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA